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Artificial Intelligence (Al)

= Alis a crucial tool in online systems
= Machine Learning (ML) enables Al in systems @ Artificial Intelligence

= Deep Learning (DL) is a subset of ML, used to solve specific
tasks

= Predictive modelling

=  Computer Vision

= Voice recognition

= Text predictions (NLP)
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Artificial Neural Networks (ANN)

= ANN are the building blocks of Deep Learning.

Transformers
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Feed-Forward NN

= Trained via backpropagation and optimized with gradient descent.



Deep Learning Workflow

= Development of deep neural networks is an iterative cycle of design, training, and optimization.
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Architecture _ & Evaluation

Deployment

ng . |+ model design - accuracy e inference
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o augmentation + optimizer er-parameter scaling agents
+ splitting + criterion = parameter updates embedded

» The iterative cycle is non-trivial: large amount of proprietary data, patented technology, computing energy,
human resources.



Deep Learning Workflow i

= Final product in the DNN lifecycle; a collection of real-valued parameters: weights and biases.

= They constitute a form of intellectual property with strategic and commercial value — safeguarding these
parameters is essential
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DNN Protection by Obfuscation

In an ideal scenario, a DNN model should be protected both in terms of architectural design and parameters.

Protecting Parameters Protecting Architecture

Prevent leakage or misuse of trained Hide the model design from
weights. attackers
or competitors.

Weights represent costly training (data, Design may reveal task-specific
compute, expertise). innovations
or proprietary knowledge.

DNN watermarking [1], Fully NN Obfuscation [4], Code
Homomorphic Encryption [2], Differential Obfuscation [5]
Privacy [3],

[1] D. Rouhani et al. (2019): DeepMarks, DeepSigns
[2] A. Stoian et al. (2023): ConcreteML - Deep Neural Networks for FHE
[3] Wang et al. (2023): Practical DP for Deep Learning
[4] Gong et al. (2021): ModelObfuscator
7 [5] Zhang et al. (2023): NeurObfuscator



Threat Model

SCENARIO: A business deploys a DNN to the cloud (MLaaS), where authorized users can use for inference.
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THREAT: Malicious and unauthorized users can perform attacks to extract the model parameters
(parameter piracy).



Proposed Scenario

= Practical Use-case

= Prevent parameter stealing from a trained DNN through an obfuscation method that minimizes the attack
surface.

= Key characteristics

= The proposed method aims at the following goals:
— lightweight - the solution should not significant introduce overhead
— straight-forward & self-consistent - simplistic mechanism
— plug-and-play - no need for 3rd party libraries or frameworks
— backwards-compatible - can be applied to pre-existing MLaaS
— maintainability, scalability



Singularization - A Novel MTD Approach

Position Paper: Strengthening Applets
on Legacy SIM Cards
with Singularization, a New Moving
Target Defense Strategy
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C. Gaber et. al. (2024) proposed a method for enhancing the security/robustness of an existing system,
without needing to perform a full replacement of the underlying system.

= Singularization relies on encoding the inputs and outputs of a security function (e.g., cryptographic

methods, code obfuscation).

= The scale and granularity of the encodings are much diverse than existing MTD methods.
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Singularization as an Obfuscation Method

= Singularization does not change the system/function itself, it rather scrambles its input and output.
= Each function instance employs unique pre- and post-scrambling procedures at the input/output level.
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Singularization in Neural Networks

The concept of unique scrambling functions [6] can be extended to DNN parameters (real-valued matrices)
through an obfuscation via permutation mechanism.

Permuting Matrices

= |narecent work [7], it was shown that a DNN can have several types of weight permutation procedures
that can be applied to its layers.

= The only mechanism of interest here: line-wise + column-wise permutations.
= Empirical results showed that weight permutation leads to random guessing for a DNN.

[6] C. Gaber et. al. (2024): Singularization: a New Moving Target Defense Strategy
[7] R. Poenaru & M. Plesa (2025): Presentation at ICMLC-2025
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Singularization Formalism

Let W € R>° be a trained weight:

Wi1 Wi2 Wiz Wigs Wis
h W21 W22 W23z W24 Wos |
W = Ws1 Ws2 Wiz Was Wss ||
W11 W42 Wiz Wags Wass
| Ws1 Ws2 Ws3 Wsa Wss

and two operators Pi;. (line-wise permutations) and Pc, (column-wise permutations),
matrices € R>*. Then, singularization will be:

Wline = I:)line W
Wiing = Whine PCol = Piine W PCy

Wi, is defined as the singularized weight.
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Permutation Example: Line-wise and Column-wise

Wsing — Rinewpcol —




Singularization Formalism Il

Inverse Singularization Transformation

. . . sing. - - -
@ The singularization procedure W —— W, is invertible.

de-sing. . . _
= Wiing is valid for F; !

@ [he de-singularization process W e

and P!

col -

@ Permutation matrices are orthogonal: P~! = PT | therefore:

W = P)I'_1 Wsing Pcz:ll - B;Ee Wsing PT

ine col

Singularization Keys 4@

For a weight W, its singularization keys are defined by the set:

{Binee P'_l Pcol-. PC:)|1

line?

allowing for both singularization and de-singularization.
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Singularization at Inference

Since DNN weights will be permuted, a mismatch in the learned data flow will cause the model accuracy
to drop.

line-wise permutations £

/

col-wise permutations £

normal flow
disrupted flow
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MLaaS with Singularization
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Workflow for a DNN

At training: optimize the weights with SGD for all layers and generate
singularization keys after training is done.

Save a model checkpoint on disk, but with the singularized weights instead of
the ’plain’ ones.

At inference: load singularized weights into memory and perform de-
singularization during the forward-pass.

Attack scenario: an unauthorized user does not have knowledge about
singularization keys, loading only the singularized weights.



MLaaS with Singularization Il

D Training

forward-pass
£ = Loss(y, §)

backward-pass
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Results for MLP

Let L3 Net be a deep neural network (DNN) defined as:
f(X) = f® o f@ o fN(X),

where each layer transformation f is defined as:
fO(H®) = ReLUWM HO),

f(HM) = ReLU(W® HM),
fAH@) = WS H®,
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Results for MLP |l

The model L3 Net was trained until a target accuracy, then the weights were
singularized, and model was re-evaluated several times.

Model Accuracy (%) Loss (Cross-Entropy)
L3 Net trained 91.0 (target acc.) 0.321
L3 Netgjng (Test 1 8.64 10.201
L3 Netgj,g (Test 2 10.40 8.852

13.05 12.021
11.24 4.757

)
)
L3 Netqng (Test 3) 11.81 8.620
)
)

(
L3 Netgj,g (Test 4
L3 Netgjng (Test 5

20 Untrained L3 Net acc: 10.14%



Singularization and Retraining (MLP)

Testing the Robusntess

@ Performance of L3 Netgjng IS
similar to random guessing.
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If the singularized weights are
extracted, an attacker might
try to retrain the model.

Accuracy (%)

=
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Retraining after permutations
shows the challenge of

L3_Net

L3_Netg;,g
L3_NetZ,,
L3_Netd,,
L3_Netg,q

L3 Net?

sing

recovering the original model.

Epochs

In a fine-tuning attack scenario, the attacker’s efforts exceeds that of training from scratch (In
terms of the number of epochs, under similar training configuration.)
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Singularization vs. Encryption (MLP)

Weight permutation is benchmarked against standard AES encryption.

Maodel Storage Weights in plaintext but permuted Weights are fully encrypted ciphertext

Key Requirement | Requires storing singularization (per- | Requires encryption/decryption keys
mutation) keys

5256

I_(ey space (brute- H;"‘:l|f:c1’1_.,:-:.._(g_l!j]_. potentially larger | 21?® to 22°%, but cryptanalysis-
force) than AES resistant under modern assumptions

Execution Can load weights directly and infer-
ence works via de-singularization

Security Reversible if permutation is known

model.pkl

22




Singularization vs. Encryption Il (MLP)

For the implementation of AES encryption [9], the cryptography [10] library was used.

Experiments Singularization (ms) AES (ms) Performance Boost

lteration 0.43 2.71 6.3x
lteration 2 0.36 2.48 6.9x
lteration 0.37 2.38 6.4x
lteration 0.34 2.58 7.6x
lteration ' 0.46 2.22 4.8x

On average, singularization is 6.4x faster than AES.

[9] AES-256 in CTR mode with a 256-bit key and 128-bit nonce.
[10] https://pypi.org/project/cryptography/
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Results for CNN

Let Conv Net be a 4-convolutional layer architecture:
f(X) =16 o f5) o f* o f3) o f@ o f(1)(X),
where each layer transformation f0 is defined as:

fFO(H©

-

= ReLU(W®™ * He),

(
f2(HM) = MaxPool(ReLU(W® * H)),
f@(H®) = MaxPool(ReLU(W® * H®)),
f(H®) = MaxPool(ReLUW® * H®)),
fO(H®) = ReLUW® H®),
fOH®) = WO HO.
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Singularization vs. Encryption (CNN)

= Timing benchmark for Singularization and AES encryption on Conv_Net [11].

Experiment Singularization (ms) AES (ms) Performance Boost
lteration 1 0.58 11.30 19.5x

[teration 2 0.54 13.00 24.1x

[teration 3 0.70 16.60 23.7x
[teration 4 0.72 14.10 19.6x
[teration 5 1.47 22.10 15.0x

= On average, singularization is 21x faster than AES.

DNN complexity

The benefit of singularization over the standard encryption is the

scalability with larger and more complex networks.

[11] AES-256 in CTR mode with a 256-bit key and 128-bit nonce.
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Conclusions

= Singularization was introduced as an obfuscation strategy for the parameters of a
DNN.

= Empirical evidence shows that the permutations introduce enough disruption,
similar to a random DNN.

= Several attack scenarios are dealt with:

= Dblack-box attacks (limited)

= extraction attacks (strong)

= fine-tuning attacks (costly, exceeds full training from scratch)
Singularization provides negligible overhead on the DNN workflow
Faster as compared to standard encryption schemes (AES).
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Thank you for your attention!

Questions?

Sincere gratitude to the conference organizers, partners, and AMTD Workshop organizers
(Simona David, Mihail Plesa, and Florentin Vizireanu, Dan Stanescu).
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