
Singularization: An Efficient Alternative to
AES for Safeguarding Model Weights

Robert Poenaru
Orange Services, Bucharest (RO)

2

▪ Introduction

▪ Obfuscation Techniques in Machine Learning

▪ Singularization as Moving Target Defense Strategy

▪ Singularization in Neural Networks

▪ Mathematical Formalism

▪ Experiments and Results

▪ Conclusions

3

▪ AI is a crucial tool in online systems

▪ Machine Learning (ML) enables AI in systems

▪ Deep Learning (DL) is a subset of ML, used to solve specific
tasks

▪ Predictive modelling

▪ Computer Vision

▪ Voice recognition

▪ Text predictions (NLP)

Artificial Intelligence (AI)

4

▪ ANN are the building blocks of Deep Learning.

▪ Trained via backpropagation and optimized with gradient descent.

5

▪ Development of deep neural networks is an iterative cycle of design, training, and optimization.

▪ The iterative cycle is non-trivial: large amount of proprietary data, patented technology, computing energy,
human resources.

6

▪ Final product in the DNN lifecycle; a collection of real-valued parameters: weights and biases.

▪ They constitute a form of intellectual property with strategic and commercial value → safeguarding these
parameters is essential

7

In an ideal scenario, a DNN model should be protected both in terms of architectural design and parameters.

Protecting Parameters Protecting Architecture

Goal Prevent leakage or misuse of trained

weights.

Hide the model design from

attackers

or competitors.

Why Weights represent costly training (data,

compute, expertise).

Design may reveal task-specific

innovations

or proprietary knowledge.

SOTA DNN watermarking [1], Fully

Homomorphic Encryption [2], Differential

Privacy [3],

NN Obfuscation [4], Code

Obfuscation [5]

[1] D. Rouhani et al. (2019): DeepMarks, DeepSigns

[2] A. Stoian et al. (2023): ConcreteML - Deep Neural Networks for FHE

[3] Wang et al. (2023): Practical DP for Deep Learning

[4] Gong et al. (2021): ModelObfuscator

[5] Zhang et al. (2023): NeurObfuscator

8

SCENARIO: A business deploys a DNN to the cloud (MLaaS), where authorized users can use for inference.

THREAT: Malicious and unauthorized users can perform attacks to extract the model parameters

(parameter piracy).

9

▪ Practical Use-case

▪ Prevent parameter stealing from a trained DNN through an obfuscation method that minimizes the attack
surface.

▪ Key characteristics

▪ The proposed method aims at the following goals:

– lightweight - the solution should not significant introduce overhead

– straight-forward & self-consistent - simplistic mechanism

– plug-and-play - no need for 3rd party libraries or frameworks

– backwards-compatible - can be applied to pre-existing MLaaS

– maintainability, scalability

10

▪ C. Gaber et. al. (2024) proposed a method for enhancing the security/robustness of an existing system,
without needing to perform a full replacement of the underlying system.

▪ Singularization relies on encoding the inputs and outputs of a security function (e.g., cryptographic
methods, code obfuscation).

▪ The scale and granularity of the encodings are much diverse than existing MTD methods.

11

▪ Singularization does not change the system/function itself, it rather scrambles its input and output.

▪ Each function instance employs unique pre- and post-scrambling procedures at the input/output level.

12

The concept of unique scrambling functions [6] can be extended to DNN parameters (real-valued matrices)
through an obfuscation via permutation mechanism.

Permuting Matrices

▪ In a recent work [7], it was shown that a DNN can have several types of weight permutation procedures
that can be applied to its layers.

▪ The only mechanism of interest here: line-wise + column-wise permutations.

▪ Empirical results showed that weight permutation leads to random guessing for a DNN.

[6] C. Gaber et. al. (2024): Singularization: a New Moving Target Defense Strategy

[7] R. Poenaru & M. Plesa (2025): Presentation at ICMLC-2025

13

Let W ∈ ℝ⁵ˣ⁵ be a trained weight:

⎡ w₁₁ w₁₂ w₁₃ w₁₄ w₁₅ ⎤
⎢ w₂₁ w₂₂ w₂₃ w₂₄ w₂₅ ⎥

W = ⎢ w₃₁ w₃₂ w₃₃ w₃₄ w₃₅ ⎥
⎢ w₄₁ w₄₂ w₄₃ w₄₄ w₄₅ ⎥
⎣ w₅₁ w₅₂ w₅₃ w₅₄ w₅₅ ⎦

and two operators Pₗᵢₙₑ (line-wise permutations) and Pcₒₗ (column-wise permutations),
matrices ∈ ℝ⁵ˣ⁵. Then, singularization will be:

Wₗᵢₙₑ = Pₗᵢₙₑ W
Wₛᵢₙg = Wₗᵢₙₑ Pcₒₗ = Pₗᵢₙₑ W Pcₒₗ

Wₛᵢₙg is defined as the singularized weight.

14

15

16

Since DNN weights will be permuted, a mismatch in the learned data flow will cause the model accuracy

to drop.

17

Workflow for a DNN

▪ At training: optimize the weights with SGD for all layers and generate

singularization keys after training is done.

▪ Save a model checkpoint on disk, but with the singularized weights instead of

the ’plain’ ones.

▪ At inference: load singularized weights into memory and perform de-

singularization during the forward-pass.

▪ Attack scenario: an unauthorized user does not have knowledge about

singularization keys, loading only the singularized weights.

18

19

Let L³ Net be a deep neural network (DNN) defined as:

f(X) = f⁽³⁾ ∘ f⁽²⁾ ∘ f⁽¹⁾(X),

where each layer transformation f⁽ˡ⁾ is defined as:

f⁽¹⁾(H⁽⁰⁾) = ReLU(W⁽¹⁾ H⁽⁰⁾),

f⁽²⁾(H⁽¹⁾) = ReLU(W⁽²⁾ H⁽¹⁾),

f⁽³⁾(H⁽²⁾) = W⁽³⁾ H⁽²⁾.

20

The model L3 Net was trained until a target accuracy, then the weights were

singularized, and model was re-evaluated several times.

Untrained L3 Net acc: 10.14%

21

In a fine-tuning attack scenario, the attacker’s efforts exceeds that of training from scratch (In

terms of the number of epochs, under similar training configuration.)

22

Weight permutation is benchmarked against standard AES encryption.

23

For the implementation of AES encryption [9], the cryptography [10] library was used.

On average, singularization is 6.4x faster than AES.

[9] AES-256 in CTR mode with a 256-bit key and 128-bit nonce.

[10] https://pypi.org/project/cryptography/

24

Let Conv Net be a 4-convolutional layer architecture:

f(X) = f⁽⁶⁾ ∘ f⁽⁵⁾ ∘ f⁽⁴⁾ ∘ f⁽³⁾ ∘ f⁽²⁾ ∘ f⁽¹⁾(X),

where each layer transformation f⁽ˡ⁾ is defined as:

f⁽¹⁾(H⁽⁰⁾) = ReLU(W⁽¹⁾ * H⁽⁰⁾),

f⁽²⁾(H⁽¹⁾) = MaxPool(ReLU(W⁽²⁾ * H⁽¹⁾)),

f⁽³⁾(H⁽²⁾) = MaxPool(ReLU(W⁽³⁾ * H⁽²⁾)),

f⁽⁴⁾(H⁽³⁾) = MaxPool(ReLU(W⁽⁴⁾ * H⁽³⁾)),

f⁽⁵⁾(H⁽⁴⁾) = ReLU(W⁽⁵⁾ H⁽⁴⁾),

f⁽⁶⁾(H⁽⁵⁾) = W⁽⁶⁾ H⁽⁵⁾.

25

▪ Timing benchmark for Singularization and AES encryption on Conv_Net [11].

▪ On average, singularization is 21x faster than AES.

[11] AES-256 in CTR mode with a 256-bit key and 128-bit nonce.

26

▪ Singularization was introduced as an obfuscation strategy for the parameters of a
DNN.

▪ Empirical evidence shows that the permutations introduce enough disruption,
similar to a random DNN.

▪ Several attack scenarios are dealt with:

▪ black-box attacks (limited)

▪ extraction attacks (strong)

▪ fine-tuning attacks (costly, exceeds full training from scratch)

▪ Singularization provides negligible overhead on the DNN workflow

▪ Faster as compared to standard encryption schemes (AES).

27

Questions?

Sincere gratitude to the conference organizers, partners, and AMTD Workshop organizers

(Simona David, Mihail Plesa, and Florentin Vizireanu, Dan Stanescu).

